Effects of lubricating-oil additives on the friction and wear properties of polymers and their composites sliding against steel under oil-lubricated conditions

Author(s):  
Zhao-Zhu Zhang ◽  
Qun-Ji Xue ◽  
Wei-Min Liu ◽  
Wei-Chang Shen
2015 ◽  
Vol 67 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Yujuan Zhang ◽  
Yaohua Xu ◽  
Yuangbin Yang ◽  
Shengmao Zhang ◽  
Pingyu Zhang ◽  
...  

Purpose – The purpose of this paper is to synthesize oil-soluble copper (Cu) nanoparticles modified with free phosphorus and sulfur modifier and investigate its tribological properties as environment-friendly lubricating oil additives. Design/methodology/approach – To improve the anti-oxidation properties of these nanoparticles, two kinds of surface modifiers, oleic acid and oleylamine were used simultaneously. The morphology, composition, structure and thermal properties of as-synthesized Cu nanoparticles were investigated by means of transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectrometry and differential thermal and thermogravimetric analysis. The tribological properties of as-synthesized Cu nanoparticles as an additive in liquid paraffin were evaluated with a four-ball friction and wear tester. Findings – It has been found that an as-synthesized Cu nanoparticle has a size of 2-5 nm and can be well dispersed in organic solvents. Tribological properties evaluation results show that as-synthesized Cu nanoparticles possess excellent anti-wear properties as an additive in liquid paraffin. The reason lies in that as-synthesized surface-capped Cu nanoparticles are able to deposit on sliding steel surface and form a low-shearing-strength protective layer thereon, showing promising application as an environmentally acceptable lubricating oil additive, owing to its free phosphorus and sulfur elements characteristics. Originality/value – Oil-soluble surface-modified Cu nanoparticles without phosphorus and sulfur were synthesized and its tribological properties as lubricating oil additives were also investigated in this paper. These results could be very helpful for application of Cu nanoparticles as environment-friendly lubricating oil additives.


2011 ◽  
Vol 284-286 ◽  
pp. 1001-1005 ◽  
Author(s):  
Peng Wang ◽  
Jing Lv ◽  
Lian Hai Wang ◽  
Qiang Ma ◽  
Xin He Zhu

This paper adopts wet method to prepare serpentine particles on the planetary ball mill, executes lipophilic degree tests and friction and wear tests of these particles. The results showed that: 1) as the modification agent, the optimum dosage of oleic acid is when the volume ratio of oleic acid and serpentine particles is 2, and the optimum time of milling (modification) is 24h. 2) 4012 maritime lubricating oil with serpentine particles has obvious anti-wear and friction effect, and the optimum dosage range of serpentine particles is 0.9%-1.0%. According to the outcomes of metallurgical microscope observation and electron microprobe analysis, a conclusion can be drawn: during the process of friction and wear, serpentine particles brought on physical or chemical reactions with the surface of test samples, create a layer of protective film, thus this kind of lubricating oil has filling function to the furrow of friction pair surface, so as to decrease the surface roughness, decrease the degree of friction and wear.


2020 ◽  
Vol 6 (12) ◽  
pp. 1250f9 ◽  
Author(s):  
Feixia Zhang ◽  
Xueyin Zhang ◽  
Faling Zhang ◽  
Guogang Tang ◽  
Changsheng Li ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 200 ◽  
Author(s):  
Guo ◽  
Peng ◽  
Du ◽  
Shen ◽  
Li ◽  
...  

Molybdenum disulfide quantum dots (MoS2 QDs) are a promising lubricant additive for enhanced engine efficiency. In this study, MoS2 QDs were used as lubricating oil additives for ball-on-disc contact and had adequate dispersity in paroline oil, due to their super small particle size (~3 nm). Tribological results indicate that the friction coefficient of paroline oil with 0.3 wt.% MoS2 QDs reached 0.061, much lower than that of pure paroline oil (0.169), which is due to the formation of a stable tribo-film formed by the MoS2, MoO3, FeS, and FeSO4 composite within the wear track. Synergistic lubrication effects of the tribo-film and ball-bearing effect cooperatively resulted in the lowest friction and wear.


2013 ◽  
Vol 774-776 ◽  
pp. 94-98
Author(s):  
Dao Yuan Pan ◽  
Peng Peng Wu ◽  
Zhong Xue Gao ◽  
Yu Zeng Zhang

Based on actual working conditions and parameters of the hydraulic steering gear, the purpose is optimizing the rubber seal of steering gear by different rubbers mixing technology. Compare the five kinds of rubber with metal of the friction characteristics in dynamic fit, it can obtain a performance excellent rubber real in the specific operation conditions. And then improve the overall service life of the steering gear. It is first prepared the same hardness TPU and PVC and blends that the ratio is 3:7, 5:5and7:3 in this article. The pros and cons of the five rubbers are analyzed in friction and wear properties of the above experimental. The test curve of coefficient friction and wear with time has been done under different load at constant low speed. It determines TPU/PVC = 3:7 blends through friction and wear and wear mechanism of five rubbers with steel comparatively analyses, and the heat resistance and wear resistance of them are better than the other TPU/PVC blends and PVC under oil lubrication conditions.


2012 ◽  
Vol 504-506 ◽  
pp. 969-974 ◽  
Author(s):  
Harald Hetzner ◽  
Stephan Tremmel ◽  
Sandro Wartzack

In sheet bulk metal forming, locally adapted friction properties of the contact tool/workpiece are an appropriate means for the targeted enhancement of the material flow, enabling an improved form filling and lowered forming forces. However, the implementation of desirable friction conditions is not trivial. And further, friction is inseparably linked to wear and damage of the contacting surfaces. This calls for a methodological approach in order to consider tribology as a whole already in the early phases of process layout, so that tribological measures which allow fulfilling the requirements concerning local friction and wear properties of the tool surfaces, can already be selected during the conceptual design of the forming tools. Thin tribological coatings are an effective way of improving the friction and wear properties of functional surfaces. Metal-modified amorphous carbon coatings, which are still rather new to the field of metal forming, allow tackling friction and wear simultaneously. Unlike many other types of amorphous carbon, they have the mechanical toughness to be used in sheet bulk metal forming, and at the same time their friction properties can be varied over wide ranges by proper choice of the deposition parameters. Based on concrete research results, the mechanical, structural and special tribological properties of tungsten-modified hydrogenated amorphous carbon coatings (a-C:H:W) are presented and discussed against the background of the tribological requirements of a typical sheet bulk metal forming process.


Sign in / Sign up

Export Citation Format

Share Document